25,042 research outputs found

    Resonance bifurcations from robust homoclinic cycles

    Full text link
    We present two calculations for a class of robust homoclinic cycles with symmetry Z_n x Z_2^n, for which the sufficient conditions for asymptotic stability given by Krupa and Melbourne are not optimal. Firstly, we compute optimal conditions for asymptotic stability using transition matrix techniques which make explicit use of the geometry of the group action. Secondly, through an explicit computation of the global parts of the Poincare map near the cycle we show that, generically, the resonance bifurcations from the cycles are supercritical: a unique branch of asymptotically stable period orbits emerges from the resonance bifurcation and exists for coefficient values where the cycle has lost stability. This calculation is the first to explicitly compute the criticality of a resonance bifurcation, and answers a conjecture of Field and Swift in a particular limiting case. Moreover, we are able to obtain an asymptotically-correct analytic expression for the period of the bifurcating orbit, with no adjustable parameters, which has not proved possible previously. We show that the asymptotic analysis compares very favourably with numerical results.Comment: 24 pages, 3 figures, submitted to Nonlinearit

    Sputtering of Oxygen Ice by Low Energy Ions

    Get PDF
    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.Comment: to be published in Surface Science (2015

    Final state interactions and hadron quenching in cold nuclear matter

    Full text link
    I examine the role of final state interactions in cold nuclear matter in modifying hadron production on nuclear targets with leptonic or hadronic beams. I demonstrate the extent to which available experimental data in electron-nucleus collisions can give direct information on final state effects in hadron-nucleus and nucleus-nucleus collisions. For hadron-nucleus collisions, a theoretical estimate based on a parton energy loss model tested in lepton-nucleus collisions shows a large effect on mid-rapidity hadrons at fixed target experiments. At RHIC energy, the effect is large for negative rapidity hadrons, but mild at midrapidity. This final state cold hadron quenching needs to be taken into account in jet tomographic analysis of the medium created in nucleus-nucleus collisions.Comment: 14 pages, 7 figure

    Derivation of the Lorentz Force Law, the Magnetic Field Concept and the Faraday-Lenz Law using an Invariant Formulation of the Lorentz Transformation

    Full text link
    It is demonstrated how the right hand sides of the Lorentz Transformation equations may be written, in a Lorentz invariant manner, as 4--vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. This formalism, making essential use of the 4-vector electromagnetic potential concept, provides a short derivation of the Lorentz force law of classical electrodynamics, the conventional definition of the magnetic field, in terms of spatial derivatives of the 4--vector potential and the Faraday-Lenz Law. An important distinction between the physical meanings of the space-time and energy-momentum 4--vectors is pointed out.Comment: 15 pages, no tables 1 figure. Revised and extended version of physics/0307133 Some typos removed and minor text improvements in this versio

    Failed attempts to improve the reliability of the alcohol Visual Probe Task following empirical recommendations

    Get PDF
    Introduction: The Visual Probe Task (VPT) is a computerised task used to measure attentional bias to substance-related stimuli. Little research has examined the psychometric properties of the VPT, despite concerns it demonstrates poor test-retest reliability and internal consistency. These issues can reduce confidence in inferences based on VPT performance. As such, we attempted to identify parameters under which the reliability of the alcohol VPT might be improved by applying recent empirical recommendations for outlier handling, bias calculation and task design from the anxiety literature. Methods: We reanalysed data from 3 previously published studies in our laboratory and 2 newly collected data-sets. We compared tasks which presented images on the left/right of the screen to above/below, whether participants responded to the location or content of the probe, and whether general alcohol-related images or images personalised to the individual were used. In each VPT we also applied a-priori outlier removal (2 and 3 standard deviations and median absolute difference) and data-driven outlier removal (Winsorising), in addition to calculating trial-level bias scores. Results: Across all studies and tasks internal consistency and test-retest reliability of attentional bias measures were inadequate. There was no consistent improvement in internal consistency or test-retest reliability as a function of outlier removal methods. Discussion: We were unable to demonstrate adequate reliability of the alcohol VPT, which further supports observations that these tasks may not yield reliable measures. Future research should focus on improving the reliability of these tasks or abandoning them in favour of more reliable alternatives

    Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations

    Get PDF
    Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches

    Relating a gluon mass scale to an infrared fixed point in pure gauge QCD

    Get PDF
    We show that in pure gauge QCD (or any pure non-Abelian gauge theory) the condition for the existence of a global minimum of energy with a gluon (gauge boson) mass scale also implies the existence of a fixed point of the β\beta function. We argue that the frozen value of the coupling constant found in some solutions of the Schwinger-Dyson equations of QCD can be related to this fixed point. We also discuss how the inclusion of fermions modifies this property.Comment: 4 pages, Revtex - Added some clarifying comments and new reference
    corecore